- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Kropholler, Robert (2)
-
Walsh, Genevieve S (2)
-
Kropholler, Robert P (1)
-
Pengitore, Mark (1)
-
Vidussi, Stefano (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We show that a conjecture of Putman–Wieland, which posits the nonexistence of finite orbits for higher Prym representations of the mapping class group, is equivalent to the existence of surface-by-surface and surface-by-free groups which do not virtually algebraically fiber. While the question about the existence of such groups remains open, we will show that there exist free-by-free and free-by-surface groups which do not algebraically fiber (hence fail to be virtually RFRS)more » « less
-
Kropholler, Robert; Pengitore, Mark (, Bulletin of the London Mathematical Society)
-
Kropholler, Robert P; Walsh, Genevieve S (, Annales de l'Institut Fourier)A group is called free-by-free if it is the semi-direct product of two finitely generated free groups. A group is coherent if any finitely generated subgroup is finitely presented, and incoherent otherwise. In this paper, the authors provide evidence towards the conjecture (due independently to the authors and Dani Wise) that every free-by-free group is incoherent. To do this, they give a homological condition which lets them conclude that the free-by-free group has a finite index subgroup which surjects onto ℤ with finitely generated kernel; standard arguments imply that this kernel cannot be finitely presented. As an important special case, they show that if the free-by-free group is hyperbolic and virtually special, then it is incoherent.more » « less
An official website of the United States government

Full Text Available